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Abstract
The present study aims to determine the impact of COVID-19 pandemic confinement on air quality among populous sites of four
major metropolitan cities in India (Delhi, Mumbai, Kolkata, and Chennai) from January 1, 2020 to May 31, 2020 by analyzing
particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), ammonia (NH3), sulfur dioxide (SO2), carbon monoxide (CO),
and ozone levels. The most prominent pollutant concerning air quality index (AQI) was determined by Pearson’s correlation
analysis and unpairedWelch’s two-sample t test was carried out to measure the statistically significant reduction in average AQI
for all the four sites. AQI significantly plummeted by 44%, 59%, 59%, and 6% in ITO-Delhi, Worli-Mumbai, Jadavpur-Kolkata,
and Manali Village-Chennai respectively. The findings conclude a significant improvement in air quality with respect to
reduction of 49–73%, 17–63%, 30–74%, and 15–58% in the mean concentration of PM2.5, PM10, NH3, and SO2 respectively
during the confinement for the studied locations. The p values for all of the four studied locations were found significantly less
than the 5% level of significance for Welch’s t test analysis. In addition, reduced AQI values were highly correlated with
prominent pollutants (PM2.5 and PM10) during Pearson’s correlation analysis. These positive results due to pandemic impris-
onment might aid to alter the current policies and strategies of pollution control for a safe and sustainable environment.
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Introduction

COVID-19 crisis is caused by coronavirus 2 (SARS-CoV-2),
a severe acute respiratory syndrome (Jandrić 2020). Currently,
India is undergoing a 4.0 phase of confinement and has
190,649 confirmed COVID-19 cases and 5406 deaths until
May 31, 2020 (covid19india.org). Confinement in India or

any part of the world ensures that all transportation, factories,
construction work, restaurants, and other social places should
be closed to follow the social distancing on a serious note.
These confinement phases not only help to control the spread-
ing of infection, but also offer improvement in planetary
health.

Air pollution is a major subgroup of environmental pollu-
tion which poses a serious threat to the ecosystem. The risk of
global sustainability can be reduced by controlling anthropo-
genic activities responsible for the emission of air pollutants in
the environment. India accounts for having one of the most
polluted capitals and cities within the globe (Guttikunda et al.
2019). During a study conducted by the Central Pollution
Control Board (CPCB), the Ministry of Environment, India
confirmed significant impact of 1-day confinement in the
country (March 22, 2020), named as “Janata Curfew” of
14 h from 7 a.m. to 9 p.m., on air quality in terms of reducing
pollutant level when comparedwith previous day data (Barkur
and Vibha 2020) (source CPCB, India).

Keeping in view the above, in the present study, impact of
COVID-19 confinement on air qualities among the populous
site of four major metropolitan cities in India (i.e., site 1—
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ITO, Delhi; site 2—Worli, Mumbai; site 3—Jadavpur,
Kolkata; and site 4—Manali Village, Chennai) were deter-
mined by evaluating alteration in PM2.5, PM10, NO2, NH3,
SO2, CO, and ozone level from January 1, 2020 to May 31,
2020. Pearson product-moment correlation coefficient
(PPMCC)-based model analysis was also proposed which de-
termine the impact of COVID-19 pandemic confinement on
air quality. Overall pandemic confinement has allowed the
environment for detoxifying and renews itself in a lesser hu-
man interference phase. Environmental analysts designate it
as a silver lining in terms of decreased carbon and waste emis-
sion but recognize it as a flawed perspective due to the expec-
tation that the AQI levels to return as the coronavirus vanish
and in some cases, they could come back strongly.

Origin of data set

Air quality index (AQI) reports daily air quality and its ele-
vated level is associated with public health risks (Szyszkowicz
2019). Based on different national quality standards and dose-
response relationships of pollutants, countries have different
air quality indices (Zhang et al. 2020; Sofia et al. 2020). The
Indian national air quality index considers eight pollutants
(PM10, PM2.5, NO2, SO2, NH3, CO, O3, and Pb) with a 24-
hourly averaging period. It is subdivided into six categories
i.e., good (0–50), satisfactory (51–100), moderately polluted
(101–200), poor (201–300), very poor (301–400), and severe
(401–500) as shown in Fig. 1 (Perera 2018; Ghorani-Azam
et al. 2016). The sub-indices for individual pollutants at a
monitoring location are calculated using its 24-hourly average
concentration value (8-hourly in case of CO and O3) and
health breakpoint concentration range. The worst sub-index
is the AQI for that location (https://app.cpcbccr.com/AQI_
India/). An increment in AQI causes acute and chronic mode
health concern especially in the older age people and in
children (Januszek et al. 2020; Pant et al. 2020). Due to the
COVID-19 pandemic confinement, there is a significant re-
duction in the level of such toxic pollutants globally (Selvam
et al. 2020; Singh and Chauhan 2020).

In the present study, concentrations of different pollutants
i.e., PM2.5 (diameter < 2.5 μm), PM10 (diameter < 10 μm),
NO2, NH3, SO2, CO, ozone, and air quality index (AQI) were
acquired from open access internet sources provided by the
Central Pollution Control Board (CPCB), Ministry of
Environment, Forests, and Climate Change (https://app.
cpcbccr.com/AQI_India/). The data were recorded daily
from January 1, 2020 to May 31, 2020, which is subdivided
into two groups: (a) pre-lockdown period—January 1, 2020 to

March 23, 2020, and (b) lockdown period—March 24, 2020
to May 31, 2020 at 17:00 IST among four different air quality
monitoring stations of the CPCB for four major metropolitan
cities in India i.e., site 1—ITO, Delhi, site 2—Worli, Mumbai,
site 3—Jadavpur, Kolkata, and site 4—Manali Village,
Chennai as shown in Fig. 2. For air quality assessment, %
variations of air pollutants during the confinement period were
compared with pre-lockdown values.

The air quality index is a piecewise linear function of the
pollutant concentration. At the boundary between AQI cate-
gories, there is a discontinuous jump of one AQI unit. To
convert from concentration to AQI, this equation is used:

I ¼ Ihigh−I low
Chigh−Clow

C−Clowð Þ þ I low

If multiple pollutants are measured, the calculated AQI is
the highest value calculated from the above equation applied
for each pollutant.where

I The (air quality) index,
C The pollutant concentration,
Clow The concentration breakpoint that is ≤C,
Chigh The concentration breakpoint that is ≥C,
Ilow The index breakpoint corresponding to Clow,
Ihigh The index breakpoint corresponding to Chigh.

Moreover, we have used unpaired Welch’s two-sample t
test analysis to measure the statistically significant reduction
in average AQI for all four sites, as t test allows us to compare
the average values of the two data sets and determine if they
came from the same population. The formula for calculating t-
statistics is given as:

t ¼ x1−x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s21
n1

−
s22
n2

s

where, x1 and x2 are the sample means, n1 and n2 are the
sample sizes, and s21 and s22 are the sample variances for sam-
ples 1 and 2 respectively.

To find out the most prominent pollutant concerning AQI
statistically, we have done Pearson’s correlation analysis by
the means of plotting heatmaps corresponding to each site.
Pearson’s correlation is also known as the “product-moment
correlation coefficient” (PMCC) and is suitable for measuring
the extent of the linear relationship between any two quanti-
tative variables statistically. A Pearson’s correlation is a num-
ber ranging between − 1 and + 1 showing negative to positive
linear correlation. Given a pair of random variables (X1, X2),

Good
(0 - 50)

Satisfactory 
(51 - 100)

Moderately 
polluted 

(101 - 200)

Poor 
(201 - 300)

Very Poor 
(301 - 400)

Severe
(401 - 500)

Fig. 1 Indian national air quality
index—category and range
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the formula for Pearson’s correlation is given by

ρX 1;X 2
¼ Cov X 1;X 2ð Þ

σX 1 σX 2

where Cov(X1, X2) is the covariance between the variables
under study and σX 1 ;σX 2 are the standard deviation of X1,
X2 respectively.

Analysis

Comparative study of AQI

In the present investigation, the AQI level was at its highest
peak on year starting among all of the four studied sites i.e.,
443 in site 1, 298 in site 2, 292 in site 3, and 166 in site 4.
Initial data indicates Delhi was in the hazardous range while
poor air quality in other states. Although irregular declining
pattern was observed in the AQI level for all of the studied
locations, a significant reduction within the pollutant level can
be seen after comparing initial and final values. A remarkable
drop falls of 44%, 59%, 59%, and 6% in mean concentration
of AQI which was observed during COVID-19 pandemic
confinement for sites 1, 2, 3, and 4 respectively as shown in
Fig. 3.

Comparative study of air pollutants

Site 1—ITO, Delhi

Delhi, India’s capital, is a massive metropolitan state in the
northern area of the country and is among one of the most
polluted capitals in the globe. Due to overpopulation and other

responsible factors for urbanization, the pessimistic anthropo-
genic impact on the environment is at maximum. But,
COVID-19 pandemic confinement facilitates the environment
to retain its health which can be observed as a significant
reduction in the air pollutant level in Delhi. At site 1—ITO,
Delhi, during confinement period, the mean concentrations of
PM2.5, PM10, NO2, NH3, and SO2 significantly plummeted
by 49%, 33%, 29%, 63%, and 24% respectively due to reduc-
tion in anthropogenic activities including traffic and
manufacturing industries. Besides, due to high temperature
and insolation during the confinement period, mean ozone
concentration was highly elevated by 109% as shown in
Table 1.

Site 2—Worli, Mumbai

Mumbai, the sixth most populous city in the world, is located
on India’s west coast and is the capital ofMaharashtra. It is the
financial, entertainment, and commercial center of India.
During COVID-19 pandemic confinement, the second most
populated city of India i.e., Mumbai has moved from poor to a
satisfactory level of air quality. As initially at site 2, the values
of the pollutants which were scattered around 200–300 μg/m3

before confinement fallen to less than 60 μg/m3 during the
confinement period (Fig. 4). The mean concentration of
PM2.5, PM10, NO2, NH3, SO2, and CO, significantly reduced
with a percentage of 73, 47, 86, 58, 58, 55, and 60 respectively
due to shutdown of navigation activities and other industrial
sectors with automobile transportation (Table 1). The drastic
decline in nitrogen oxide levels over Mumbai is the result of
reduced carbon-emission hotspots, industrial and coal
combustion-dominated areas. A decrease in the concentration
of urban ground-level ozone was recorded by 60% due to high
reduction in nitrogen oxide concentration in the atmosphere.

Fig. 2 The geography of monitoring stations among the populous sites of four major metropolitan cities in India
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Site 3—Jadavpur, Kolkata

After Delhi and Mumbai, Kolkata is the third populous met-
ropolitan area in the nation. Kolkata is the educational, cultur-
al, and commercial center of the eastern part of the country
and is the capital of West Bengal. The concentration of
PM2.5, PM10, NO2, NH3, SO2, and CO at site 3 significantly
dropped steeply from 242, 205, 85, 10, 9, and 49 μg/m3 as on
January 1, 2020 to 20, 28, 9, 1, 7, and 22 μg/m3 during
COVID-19 pandemic confinement on May 31, 2020, respec-
tively. Also, the mean concentration levels of PM2.5, PM10,
NO2, NH3, SO2, and CO significantly reduced by 73%, 63%,
79%, 74%, 15%, and 32% due to decline in fossil fuel

consumption, biomass burning, and other anthropogenic ac-
tivities as observed from Fig. 4, while ozone levels were sig-
nificantly raised by 77% with total variation of + 22 μg/m3

during confinement period as similar to Delhi due to high
winds, intermittent rains and thunderstorms, and high temper-
ature and heatwaves.

Site 4—Manali Village, Chennai

Chennai, the capital of Indian state of Tamil Nadu, is the
fourth urban agglomeration in the nation and is the 36th larg-
est urban area by population in the world. It is located on the
Coromandel Coast off the Bay of Bengal and is center for the

Fig. 3 Comparative AQI levels during pre-lockdown and lockdown pe-
riod at 17:00 IST among four different air quality monitoring stations of
the CPCB for four major metropolitan cities in India (site 1—ITO, Delhi,

site 2—Worli, Mumbai, site 3—Jadavpur, Kolkata, and site 4—Manali
Village, Chennai)

Table 1 Air quality assessment—variations and change (%) of average concentrations for different air pollutants during the pre and COVID-19
pandemic confinement, 2020 among populous sites of four major metropolitan cities in India

Pollutants Pre-lockdown values Lockdown Variation and % change (pre-lockdown and lockdown)

Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4

AQI 238 151 144 68 134 62 59 64 − 104 (44%) − 89 (59%) − 86 (59%) − 4 (6%)

PM2.5 238 132 135 56 122 36 36 26 − 116 (49%) − 96 (73%) − 99 (73%) − 30 (54%)

PM10 150 116 122 60 100 61 45 49 − 50 (33%) − 54 (47%) − 77 (63%) − 10 (17%)

NO2 44 48 55 9 31 7 11 10 − 13 (29%) − 41 (86%) − 43 (79%) 1 (7%)

NH3 10 2 8 14 4 1 2 9 − 6 (63%) − 1 (58%) − 6 (74%) − 4 (30%)

SO2 19 12 11 14 14 5 9 9 − 4 (24%) − 7 (58%) − 2 (15%) − 6 (39%)

CO 53 28 33 25 84 13 22 35 31 (59%) − 15 (55%) − 11 (32%) 9 (37%)

O3 35 85 29 36 73 34 51 65 38 (109%) − 51 (60%) 22 (77%) 29 (80%)

PM2.5 in μg/m3 , PM10 in μg/m3 , CO in μg/m3 , NH3 in μg/m
3 , NO2 in μg/m3 , SO2 in μg/m

3 , and O3 in μg/m
3

AOI air quality index
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cultural, economical, and educational activities of south India.
Similar to all other studied sites, the air quality of site 4—
Manali Village, Chennai also confirmed improvement in
terms of reduction in pollutant level during the confinement
period. The mean concentrations of PM2.5, PM10, NH3, and
SO2 were reduced by 54%, 17%, 30%, and 39% respectively
as shown in Fig. 4, while due to fuel and coal burning, vehic-
ular emissions, and continuous functioning of power plants in
the neighborhood of site 4, there was no significant reduction
in NO2 (+ 1 μg/m3), CO (+ 9 μg/m3), and ozone levels (+
29 μg/m3) (https://www.cag.org.in/blogs/air-quality-chennai-
during-lockdown-do-we-have-clues-mitigate-air-pollution).

Pearson correlation analysis

The Pearson correlation coefficient was determined by con-
structing a heatmap for the concentration of various pollutants
(pre and during pandemic confinement) among populous sites
of four metropolitan cities of India, viz. ITO, Delhi, Worli,
Mumbai, Jadavpur, Kolkata, and Manali Village, Chennai.

Site 1—ITO, Delhi

At this site, the perfect positive correlation was observed be-
tween AQI and PM2.5, a strong positive correlation between
AQI-PM10 and PM2.5-PM10, whereas a negative correlation
was observed for ozone with AQI and other pollutants. The

correlation coefficient between AQI-PM2.5, AQI-PM10, and
PM2.5-PM10 was found as 0.98, 0.82, and 0.77 respectively,
showing a significantly higher positive relationship. This in-
dicate the changes in PM2.5 and PM10 concentrations have a
great influence on AQI content; i.e., an increase in their con-
centration will directly elevate the air quality index. Besides,
AQI-ozone, PM2.5-ozone, and PM10-ozone confirmed low
negatively correlated variables, i.e., − 0.31, − 0.38, and − 0.18
respectively indicating the higher values of AQI, PM2.5, and
PM10 will lower down the ozone concentration. A feeble
correlation exists between AQI-NH3 (0.46), AQI-NO2

(0.38), AQI-SO2 (0.28), and AQI-CO (0.11) showing mild
effect on AQI (Fig. 5 (a)).

Site 2—Worli, Mumbai

Product-moment correlation coefficient analysis for site 2
demonstrates the positive correlation between all of the stud-
ied pollutants as shown in Fig. 5 (b). The highest correlations
were confirmed between AQI-PM2.5, with a correlation of
0.97, AQI-PM10, with 0.94, and PM2.5-PM10, with 0.91
which demonstrates PM2.5 and PM10 are the most significant
dominating factors in elevating the AQI. A correlation value
of 0.80, 0.74, 0.72, and 0.86 between AQI-NO2, AQI-NH3,
AQI-SO2, and AQI-CO indicates a significant positive rela-
tionship, while moderate correlation was determined between
CO and ozone concentration (0.53).

Fig. 4 The concentration of air pollutants (PM2.5 in μg/m3, PM10 in μg/
m3, CO in μg/m3, NH3 in μg/m

3, NO2 in μg/m
3, SO2 in μg/m

3, and O3 in
μg/m3) during pre-lockdown and lockdown period at 17:00 IST among

four different air quality monitoring stations of the CPCB for four major
metropolitan cities in India (site 1—ITO, Delhi, site 2—Worli, Mumbai,
site 3—Jadavpur, Kolkata, and site 4—Manali Village, Chennai)
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Site 3—Jadavpur, Kolkata

A significant positive correlation was observed between
the prominent pollutants PM2.5, PM10, NO2, NH3, and
CO with AQI, i.e., 0.96, 0.95, 0.86, 0.70, and 0.70 respec-
tively in site 3 as shown in Fig. 5 (c). This implies the
studied pollutants had a great impact on air quality among
monitoring station of Jadavpur, Kolkata, whereas ozone
shows a negative correlation with AQI (− 0.25), and other
studied pollutants i.e., PM2.5 (− 0.32), PM10 (− 0.36),
NO2 (− 0.48), NH3 (− 0.50), and CO (− 0.35). This indi-
cates mean O3 concentration will significantly increase
with a decrease in the mean AQI, PM2.5, PM10, NO2,
NH3, and CO concentrations.

Site 4—Manali Village, Chennai

Pearson’s correlation heatmap for Manali Village,
Chennai demonstrates significant positive correlations
for PM2.5 (0.69) and PM10 (0.73) with AQI, while other
pollutants exhibit a moderate or negative correlation. The
lowest values of correlation coefficient were found for the
pairs AQI-NO2 (0.26), AQI-NH3 (0.04), and AQI-CO
(0.33) indicating mild association between these vari-
ables; i.e., the effect of concentration of NO2, NH3, and
CO on air quality is minimal. However, the approximately
zero correlation between AQI-SO2 (0.009) and AQI-
ozone (0.01) indicates no linear relationship, but there
may be some other strong non-linear relationship between
the two variables (Fig. 5 (d)). In other words, we can say
that the simple linear function cannot describe its relation-
ship in depth.

Inferential t-statistic (Welch’s two-sample t test)

In the present study, the significant impact of COVID-19 pan-
demic confinement on air quality in studied locations was
determined by right-tailed, Welch’s two-sample t test. The
complete data set was divided into two groups, pre-
confinement (A) and during confinement (B) to assess if there
is a statistically significant effect of confinement on AQI.
Independent random samples of sizes n1, n2 were drawn by
using a random number table from both the groups and ap-
plied t test using the R-software. This inferential statistic was
used to test the following hypothesis:

H0: No significant difference between the means of two
groups i.e., no significant effect of COVID-19 pandemic
confinement on AQI (μ1 = μ2).
HA: Significant difference between the means of two
groups i.e., air quality is significantly improved during
COVID-19 pandemic confinement (μ1 > μ2), where μ1
and μ2 are the population means of the two groups.

From Table 2, we can observe that the t-statistic (5.91),
which when compared with critical t value (1.67) at 5% level
of significance (α), rejected the null hypothesis and confirmed
the significant reduction in the AQI for site 1. The p value was
also found to be very small, suggesting that the COVID-19
pandemic confinement reduced AQI (45%). The p value re-
vealed it is “unlikely” that we would observe such an extreme
test statistic t* in the direction ofHA if the null hypothesis was
true. Therefore, the initial assumption that the null hypothesis
is true must be incorrect. That is, since the p value,
0.00000015, is very less than α = 0.05, we reject the null

Fig. 5 Pearson’s correlation
heatmap for air pollutants during
the pre and COVID-19 pandemic
confinement, 2020 among popu-
lous sites of four major metropol-
itan cities in India
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hypothesis H0 : μ1 = μ2 in favor of the alternative
hypothesis HA : μ1 > μ2. However, if we lowered our willing-
ness to make a type I error to α = 0.01 instead, the significant
rejection of the null hypothesis is again observed. This is due
to reduction in anthropogenic activities including fuel and coal
burning, vehicular emissions, and manufacturing industries.

The same behavior can be observed from the data of
Table 2 for 2nd, 3rd, and 4th studied locations where the much
lowered p values exhibited the statistically significant effect of
COVID-19 pandemic confinement in lowering the sample
mean AQI by 58%, 60%, and 17% respectively.

Conclusion

The present study demonstrates the impact of COVID-19 pan-
demic confinement on air quality among the populous site of
four major metropolitan cities in India i.e., site 1—ITO, Delhi,
site 2—Worli, Mumbai, site 3—Jadavpur, Kolkata, and site
4—Manali Village, Chennai. A data set was constructed for
AQI, PM2.5, PM10, NO2, NH3, SO2, CO, and ozone from
January 1, 2020 to May 31, 2020 from the Central Pollution
Control Board (CPCB). Pearson’s correlation analysis and
Welch’s t test were performed for the determination of statis-
tically significant improvement in the air quality during the
confinement period. A remarkable drop falls of 44%, 59%,
59%, and 6% in AQI which was observed during COVID-
19 pandemic confinement in sites 1, 2, 3, and 4 respectively. It
can be concluded that remarkable improvement in the air qual-
ity during confinement period was observed as the p values of
the test for all of the four sites were very less than the signif-
icance level (α = 0.05). Besides, the Welch’s t test was sup-
ported by findings of Pearson’s correlation analysis in which
the prominent pollutants (PM2.5 and PM10) were also found
to be highly correlated with AQI. Although a significant im-
pact on planetary health can be noticed during COVID-19
pandemic confinement, the circumstance is momentary and
limits for a short duration i.e., only up to confinement period.
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A B S T R A C T

Algae are photosynthetic eukaryotes that may range from unicellular to multicellular forms. Algae have been
reported from almost all the ecological systems, including terrestrial, marine, and aquatic ecosystems. The
manual classification of algae is a time-consuming method and requires great efforts with expertise due to the
numerous families and genera. In the present study, an automated system is developed for the identification and
classification of the 16 algal families with a data set of 80,000 images by a modified ResNeXt CNN (Convolution
Neural Network) model. Cell differentiation by modified ResNeXt CNN topology is based on cell arrangement
and morphological features including area, width, shape, and length of the cell. An experimental result of
99.97% classification accuracy demonstrates the effectiveness of the proposed method. The present investigation
may open a new path in the future for the development of a time and a cost-effective, highly sensitive computer-
based system for the identification and classification of different algae.

1. Introduction

Water is a fundamental component of life [1]. But due to various
natural and anthropogenic activities, quality and quantity of water
bodies are reducing globally [2,3]. Harmful algal blooms (HABs) are
one of the major agents, affecting water quality due to their ability for
producing various toxins [4,5]. Algae are photosynthetic eukaryotes
that may range from unicellular to multicellular forms and produce a
wide range of bioactive substances in which some are classes of toxins
[6,7]. Various environmental conditions such as high concentrations of
nutrients, particularly phosphorus, high water temperature, long hy-
draulic retention time, stable water body stratification, etc., favor algal
bloom formation [8,9]. Regulatory and specialized agencies concerned
with public health have introduced specific water quality protocols
concerning algae for potable water. These risk management approaches
are based on hazard assessment by algal identification, determination,
and limitation of critical control points [10,11]. Therefore types and
threshold levels of algal species have become critical for ensuring
successful water management. As the manual identification of algae
requires expertise and great efforts, a computer-based automated
system with high accuracy may open a new path for the development of
time and a cost-effective approach [12]. The advanced machine
learning technique like deep learning is an emerging and effective tool

for the identification and differentiation of different algal genera. Si-
milar to manual identification, automated technique classifies algal
cells based on the morphological characters and parameters including
area, width, shape, and length of the cell [13].

For the last few decades some studies reported, different automated
models such as a convolutional neural network (CNN), neural archi-
tecture search (NAS), artificial neural networks (ANN), etc. for algal
identification. Promdaen et al. [14] demonstrate an automated re-
cognition system with computing texture descriptors, feature combi-
nation approach, and Sequential Minimal Optimization (SMO) for the
identification of 12 microalgae found in water resources of Thailand.
They confirmed the effectiveness of the method in terms of 97.22%
classification accuracy. Li et al. [15] demonstrate a promising and ef-
ficient solution via the Mueller matrix imaging system based on con-
volutional neural networks (CNNs) for the automatic classification of
morphologically similar algae. They worked on a data set contains
10,463 Mueller matrices and achieve 97% classification accuracy. De-
glint et al. [16] developed an innovative system with 96% accuracy for
classifying six algal genera using a pre-trained deep residual convolu-
tion neural network. Park et al. [13] developed an effective CNN model
for the classification of eight algal genera from watersheds with an F1-
score of 0.95. They conclude the automated system as an emerging tool
with high efficiency and rapid responses for monitoring algal events in

https://doi.org/10.1016/j.algal.2020.102018
Received 28 May 2020; Received in revised form 14 July 2020; Accepted 18 July 2020

⁎ Corresponding author at: Department of Biotechnology, Institute of Applied Sciences & Humanities, G.L.A. University, Mathura, U.P., India.
E-mail address: gaurav.pant@gla.ac.in (G. Pant).

Algal Research 50 (2020) 102018

Available online 27 July 2020
2211-9264/ © 2020 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/22119264
https://www.elsevier.com/locate/algal
https://doi.org/10.1016/j.algal.2020.102018
https://doi.org/10.1016/j.algal.2020.102018
mailto:gaurav.pant@gla.ac.in
https://doi.org/10.1016/j.algal.2020.102018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.algal.2020.102018&domain=pdf


water bodies. Santaquiteria et al. [17] demonstrate a differential seg-
mentation approach for diatoms by an automated system for grading
water quality. With the dataset of 126 images of 10 different taxa,
debris and fragments they improved a sensitive system with an average
sensitivity of 95%, the specificity of 60%, and precision to 57%. Be-
sides, they also demonstrate an instance segmentation approach that
was able to separate the overlapping of diatoms.

Although some studies in the past have been reported, which solve
automated identification problem for algae, however, most of the pre-
vious studies classify few algal families with less range of morpholo-
gically similar groups with the pre-trained model. There is ample scope
to develop such automatic techniques with high learning ability for the
quandary. More recently, to perform an automated identification and
classification task for seven Pediastrum species within a data set of
42,000 images, we proposed an efficient modified ResNeXt CNN model
[18]. The proposed modified model was developed by reducing para-
meters including kernel size and filter size from the original ResNeXt
CNN model. Classification accuracy, ROC curve area, and F1-score of
98.45%, 99%, and 0.98 respectively, demonstrate the high effectiveness
of the proposed method. In view to our previous work, an attempt has
been made in the present study for the identification and classification
of the 16 algal families including Peranemataceae, Phormidiaceae, Nos-
tocaceae, Ceratiaceae, Chlamydomonadaceae, Euglenaceae, Scenedesma-
ceae, Dunaliellaceae, Volvocaceae, Cyanophoraceae, Gymnodiniaceae,
Oocystaceae, Oocystaceae, Oscillatoriaceae, Peridiniaceae and Euglenaceae
by modified ResNeXt CNN model. In the future, such algorithms will
support various phycological and water management studies as a cost
and time effective facilities.

2. Material and methods

2.1. Proposed method

In the present study, algae classification is performed a using
modified ResNeXt CNN model derived from the residual network as
mentioned by Pant et al. [18]. The proposed model contains ReLu ac-
tivation, residual blocks, grouped convolution, and the final dense layer
was used in softmax optimizer. The architecture of the proposed Re-
sNeXt CNN model is shown in Fig. 1. In a deep learning model grouped
convolutions allow to build a wide network by replicating the filters in
a module. This process reduces the computation by obtaining feature
maps from kernel filters [19]. The Leaky ReLu activation function was
used to remove gradient decent problems and to avoid saturation of the

model [20].
In the proposed model Leaky ReLu activation is used after batch

normalization. The inner product can be a consideration as a form of
aggregating transformation

=
w y

i

N
i i1 (1)

where, y = (y1,y2,y3……yN) i.e. N channel input vector to the neuron.
The filter weight of the ith neurons is given by wi.

Elementary transformation (wiyi) was replaced with a more generic
function, which itself can also be a network. Aggregated transforma-
tions can be presented as:

=
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i

C

i
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where, Vi(y) is an arbitrary function. Analogous to a simple neuron, Vi

should project y into an (optionally low dimensional) embedding and
then transform it. The residual block of the proposed model can be
defined as:

= +
=

x y V y( )
i

C
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where, x= the output of the proposed model, C= the cardinality of the
model and, y= input vectors to neurons. The final dense layer contains
a softmax optimizer which converts logits into the probability of change
to a particular algal class. This probability value can be calculated
based on input weight and bias. Finally, the value is converted to the
class value of the algae. Eqs. (4) and (5) are used to calculate the value
for softmax optimizer.
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where, Φ= input vector, w0x0= the bias of the ith class, N= 16 (algal
genera classes). The value of i= 0 to 15, the index and corresponding
class representation can be given as:

i = {0: Anabaena, 1: Arthrospira, 2: Anisonema, 3: Ceratium, 4:
Chlamydomonas, 5: Cyclidiopsis, 6: Desmodesmus, 7: Dunaliella, 8:
Eudorina, 9: Glaucophyta, 10: Gymnodinium, 11: Kirchneriella, 12:
Oonephris, 13: Oscillaroria, 14: Peridinium, 15: Phyacus}. The network
was trained with the image size 256 × 256 × 3 and cardinality hyper-
parameter C = 32. The final dense layer is adjusted to 16 class

Fig. 1. The modified ResNeXt model architecture for the classification of the 16 algal genera.
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classification. The network is trained to 20 epochs and took a com-
puting time of approximately 14 h on an Nvidia GeForce GTX TITAN X
GPU.

3. Results and discussion

3.1. Dataset

In the present study, the dataset was constructed for 16 algal fa-
milies. Algal images were collected from different open access internet
sources and previous phycological studies carried out by authors, si-
milarly as mentioned by Pant et al. [18]. The original dataset contains
100 algal images.

3.2. Data augmentation

The size of the dataset was enhanced up to 80,000 images by using
techniques described by Pant et al. [18]. The augmented dataset was
constructed in such a way so that an equal number of images were
distributed in each class. For training and validation of the model, 80%
(64,000) and 20% (16,000) of images are randomly fractionated.

3.3. Training and validation

Based on the morphological characteristics, algal genera were ca-
tegorized as unicellular and multicellular forms as shown in Fig. 2.
Before training and validation, the input size was attuned to adopt the
image of size 256 × 256 pixels. The initial learning rate was set to 1e−3

with a batch size of 15. The labeling of each class was performed in
both the training and the validation images. The network was compiled
with the Adam optimizer.

The performance of the system was evaluated by the parameters
accuracy (ACC), precision (Pre), recall (Re), and F1-score from the
confusion matrix which can be defined as:

= +
+ + +

ACC Tp Tn
Tp Tn Fp Fn (6)

=
+
Tp

Tp Fp
Pre

(7)

=
+
Tp

Tp Fn
Re

(8)

=
+

F score1 2 Pre Re
Pre Re (9)

where, Tp (true-positive), Fp (false- positive), Fn (false-negative) and Tn
(true-negative).

The training loss (Trn-Loss) and the testing loss (Ts_Loss) were
calculated by the categorical_crossentropy. The training and the testing
accuracy and Trn-Loss and the Ts_Loss are shown in Fig. 3. The training
and testing accuracy of the proposed network was 100 and 99.97%,
while training and testing loss were found as 0.04 and 0.06% respec-
tively. Results indicate the outstanding performance of the model for
classifying algal genera in the present study. Although, loss in training
and testing can be further reduced by running the model for more
epochs. The important factor to decide the number of epochs is based
on the validation error of the proposed model. For example, if the va-
lidation error starts increasing that might be an indication of over-
fitting. In such a case the model should be set on the number of epochs
as high as possible and terminate training based on the error rates. After
running the model for several epochs, the model accuracy starts sa-
turating. The minimum number of epochs that saturates the accuracy
should be fixed for the proposed model. In the present study, the model
gets saturated after 20 epochs. We also conducted another experiment
by running the system on 25 epochs. In which, the validation loss de-
creases to 0.002., but there was no change in the training and classi-
fication accuracy. Thus, the minimum number of epochs was set at 20.

3.4. The error matrix

In the present study, an error matrix was plotted for the sensitivity
determination of the proposed model as described by Pant et al. [18].
The rows and columns represent predicted classes and their instances
respectively. Similar morphological features between different algal
species may influence the sensitivity of automated models. Various
studies have been reported for the reduction in accuracy during auto-
mated classification due to the same features and cellular arrangements
of algal classes. Giraldo-Zuluaga et al. [21] reported a reduction in
classification accuracy of the Artificial Neural Network (ANN) model by
misclassification of Scenedesmus sp. due to similar cell shape and tex-
ture. A similar observation was reported by Pant et al. [18] during the
automated classification of seven Pediastrum species by modified Re-
sNeXt CNN topology in which 30 false positive and negative values
were obtained during the error matrix analysis in a dataset of 42,000
images. The misclassification of algal species with similar morpholo-
gical characteristics can be reduced through the training of a model
with less noised image and large training dataset. A very high deep
learning model for example 150 layers deep learning model can also be
used to reduce misclassification [22]. The classification accuracy
achieved by the proposed model was optimal and acceptable. In the

Fig. 2. Classification of 16 algal genera based on the morphological features.
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present study, confusion matrix for the Anabaena and Arthrospira, false-
positive value, and false-negative value is 5 within the testing dataset
i.e. 5 images of Anabaena are wrongly predicted to Arthrospira, due to
the similarities including filamentous morphological shape and pre-
sence of helical trichomes. While due to similarties as coiled mor-
phology and unflagellated ovoid green unicells, five images of the genus
Arthrospira and Oonephris are misclassified with each other. Besides,
similarities like biflagellate flattened ovoid shape and armoured dino-
flagellates in Anisonema with Peridinium are affinity causing factors as
shown in Fig. 4.

3.5. F1-score and Receiver Operating Characteristic (ROC) curve

The performance of the model was measured by the precision, re-
call, and F1-score. The class-wise performance measured of the algal
genera [23]. In the previous study Pant et al. [18], seven classes of
Pediastrum were identified and classified by the modified ResNeXt CNN
model. But due to very high morphological similarities among algal
species, an increase in false-positive value with a decrease in true po-
sitive values were observed, which reduces precision. While in the
present study due to less morphological similarities between 16 algal
families the false-positive values were less and true positive values were
high. Thus the precision of the proposed model increased up to 0.99.
Among 16 algal species studied, the F1 score reaches its best value at 1
(i.e. perfect precision and recall) for 11 classes i.e. for Ceratium, Chla-
mydomonas, Cyclidiopsis, Desmodesmus, Dunaliella, Eudorina, Glauco-
phyta, Gymnodinium, Kirchneriella, Oscillatoria, and Phyacus, while for

Anabaena, Arthrospira, Anisonema, Oonephris, and Peridinium, F1 score
demonstrates very high prediction values (Table 1).

Receiver Operating Characteristic (ROC) analysis is also performed
for accuracy evaluation of the proposed automated model. The ROC
curves for 16 class algal classification were more than 99% as shown in
Fig. 5. The ROC curves of some classes are very closed to 100%. The
effectiveness of the proposed modified deep ResNeXt CNN topology
measured using different parameters is notable.

Fig. 3. Training and validation of the proposed model with accuracy and loss.

Fig. 4. Confusion matrix of the proposed model.

Table 1
The class-wise performance measure (F1-score) of the proposed model.

S. no. Algae Precision Recall F1 - score

0 Anabaena 0.99 0.99 0.99
1 Arthrospira 0.99 0.99 0.99
2 Anisonema 0.99 0.99 0.99
3 Ceratium 1 1 1
4 Chlamydomonas 1 1 1
5 Cyclidiopsis 1 1 1
6 Desmodesmus 1 1 1
7 Dunaliella 1 1 1
8 Eudorina 1 1 1
9 Glaucophyta 1 1 1

10 Gymnodinium 1 1 1
11 Kirchneriella 1 1 1
12 Oonephris 0.99 0.99 0.99
13 Oscillatoria 1 1 1
14 Peridinium 0.99 0.99 0.99
15 Phyacus 1 1 1
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4. Conclusion

In the present study, a deep learning-based algorithm has been
developed to reduce time and dependency on an expert for algal
identification by modified ResNeXt CNN topology. The proposed model
confirms high accuracy and acceptable loss during training and vali-
dation for an augmented data set consisting of 80,000 images of 16
algal species. In addition to very little affinity in confusion matrix and
99% ROC curve area, the effectiveness of the proposed model is de-
termined by high F1-score, training accuracy, and classification accu-
racy i.e. 99.9%, 100%, and 99.97% respectively. This accuracy is much
better than the state-of-the-art methods. In the future study, we will add
more algae class for the classification. The proposed models also need
to test on the other dataset, so that the performance of the system can
be further evaluated.
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